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It is generally thought that the resonance Raman spectrum can be used to predict the 

vibronic paths of radiationless decay or intramolecular electron transfer (ET) following electronic 

photoexcitation.1'5 We show that this assumption does not hold for the Si-»S0 ET of [(CN)5 Fe 

CN Ru11 (NH3)5]" in solution following S0-»Si optical excitation. Instead, vibrational modes that 

are not observed in the charge transfer resonance Raman spectrum, i.e., are not immediately 

displaced with photoexcitation of the ground electronic state, are active in the reverse, 

radiationless ET process. 

The metal-metal charge transfer in [(CN)5 Fe11 CN Rum (NH3)5]'  can be formally 

represented as 

hu 
[(CN)5FeIICNRu,n(NH3)5r   ==   [(CN)5FeinCNRuII(NH3)5r 

ET 

Optical excitation of the charge transfer absorption band corresponds to direct ET between the 

metal centers. This excited electronic state relaxes to the ground electronic state by reverse ET. 

The theoretical formulation of the thermally and optically induced ET reactions of these bimetallic 

systems was developed by Marcus,6 Sutin7 and Hush,8 among others. Recent experimental work 

in resonance Raman1_4 and time-resolved spectroscopy, at both optical ' and infrared ' 

frequencies on mixed valence and related ET systems has sought to characterize the roles of 

vibrations in ET reactions. 

Experimental 

The apparatus and experimental method have been described in detail elsewhere.   Briefly, 

100 fs excitation pulses centered at 800 nm are used to photoinduce charge transfer and the 



subsequent vibrational dynamics in the ground and excited electronic states are interrogated by 

femtosecond infrared probe pulses. Time resolved IR spectra and transient kinetic signals are 

obtained by varying the relative time delay of pump and probe pulses. The transmitted IR pulses 

are detected using a monochromator and a HgCdTe photodiode array. For transient absorbance 

measurements, sample solution is placed in a 0.75 mm pathlength spinning cell with thin CaF2 

windows, which provides a fresh sample volume for every laser shot. The pump energy is 5 

uJ/pulse and is focused to 0.300 mm A half-wave plate is placed in the pump beam to allow 

polarization-dependent measurements. The concentration of [(CN)s Fe CN Ru (NH3)5] " in 

formamide (FA) solvent was 7 mM. 

Results and discussion 

The charge transfer band of FeRu in FA is found in the near infrared wavelength region, 

with maximum intensity at 1.2 urn. This is the transition that is induced by the optical pulse of the 

laser. The charge transfer band shape has been fit previously using the resonance Raman data 

and a classical model for the solvent and low frequency vibrations of the solute. 

Figure 1 shows the static infrared and 1.06 urn resonance Raman spectra of FeRu in 

FA.13 These spectra show three bands assigned to the trans, eis, and bridging CN modes at 1998, 

2051, and 2089 cm"1 , respectively. Here trans and eis mean trans and eis to the bridging CN. 

Note that the eis band is present in the IR spectrum but not in the resonance Raman spectrum. 

These resonance Raman spectra illustrate the bridging and trans CN modes that are predicted to 

be excited in the electron transfer reaction.2'4'5 The IR probe pulse detects equilibrium and non- 

equilibrium CN vibrational absorbances. 



Figure 2 shows the transient infrared difference spectra of FeRu/FA in CN stretch region, 

where the signal shows the changes in the sample vibrational spectrum caused by the pump pulses 

which change the sample's electronic state. Negative AOD features correspond to loss of ground 

state vibrational absorptions and positive AOD features correspond to new vibrational absorptions 

created as a result of excitation by the optical pump pulse. There are bleaches of ground 

electronic state vibrational absorbances at ca 2000 cm"1 and 2050 cm'1, which correspond to 

trans CN and eis OST stretches, respectively, as determined by anisotropy measurements. Fits of 

a convolution of the excitation and probe pulses with a single exponential form for the sample 

response gives ca 200 fs relaxation times for the reverse electron transfer, consistent with earlier 

optical measurements.5 This means that most of the spectral dynamics shown in Figure 2 are due 

to relaxation of non-equilibrium vibrational absorptions of the ground electronic state, which 

follow reverse electron transfer. 

One of the most important features of Figure 2 is the differential absorbance peak at 2030 

cm"1. The anharmonicity of the CN mode is ca 20 cm'1.15 Therefore, this feature at 2030 cm"1 

reflects v = 1 -» v = 2 transitions of the eis CN mode.16 Similarly, the differential absorbance peak 

at 1985 cm'1 reflects excited vibrational state absorption of the trans CN mode in S0. Static 

heating solutions of [(CN)5 Fe" CN RuUI (NH3)5]" in formamide shows that the cross section of the 

bridging CN stretch increases intensity with heating, and we explain the differential absorption at 

2080 cm"1 as caused by rapid local heating as a consequence of energy release by the radiationless 

decay process. The frequencies of the ground state vibrational absorbances shift less than 1 cm" 

with bulk thermal heating from 16 to 34 °C. Our transient IR data are thus consistent with ca 20% 

population of the v = 1 level of the eis and trans vibrational modes following reverse electron 



transfer. The kinetics at 2030 and 1980 cm"1 indicate that the I*! times for the eis and trans modes 

are ca 10 ± 3 ps and 5 ± 3 ps, respectively. 

The resonance Raman spectra show no activity in the cis-CN mode, and thus the transient 

infrared evidence of excitation in this mode is unexpected. We now consider whether this cis-CN 

vibrational excitation is caused by ultrafast electron transfer or by vibrational energy 

redistribution17'18 within one electronic state. Vibrational energy redistribution within the ground 

electronic state (Fe(II)Ru(III)) is too slow to account for the ca 100-200 fs appearance of energy 

in cis-CN, based on the 20 cm'1 vibrational linewidths that set a conservative bound on the 

vibrational state lifetime of- 500 fs. The short excited state (Fe(III)Ru(II)) lifetime causes the 

CN resonances to be broad (50-100 cm'1) and overlapping, and thus provide little information on 

eis- to trans-CN vibrational energy exchange in that excited state. However, we note (1) that 

the vibrational resonances of the electrochemically prepared species Fe(III) (CN)6 " are less than 

20 cm"1 wide, and (2) that the anisotropy shows that the cis-CN mode is perpendicular to trans- 

and bridging-CN modes which could potentially donate energy, thus mechanical coupling is likely 

to be weak. We have also changed solvents (formamide to deuterated water) to alter the phonon 

spectrum of the sample at 50 cm'1 and find similar vibrational excitation of cis-CN. Sub-100 fs 

vibrational energy redistribution in Si is therefore unlikely and we conclude that the population of 

the cis-CN excited vibrational states is caused by electron transfer. 

We can explain our results in the following way. If the vibrational modes coupled to the 

reverse electron transfer are not modes that are Franck-Condon active in the equihbrium 

configuration of the ground electronic state, then relaxation within the excited electronic state 

leads to a new set of modes that vibronically couple in the return to the ground electronic state. 



Such effects have not been previously observed in this class of molecules or in electron transfer 

20 21 
systems in general, although related effects have been observed in smaller systems. '    The data 

presented here therefore suggest that charge transfer absorption or resonance Raman spectra may 

not always provide the inner sphere (vibrational) reorganization information necessary to 

characterize the radiationless electron transfer process. 
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Figure Captions: 

Figure 1. Static infrared (solid line) and resonance Raman (dashed line) spectra of [(CN)s Fe11 CN 

Rum (NH3)5]' in formamide solvent. Three resonances are observed, at 1998, 2051, and 2089 

cm"1. These three resonances are assigned to trans-CN, cis-CN and bridging CN. The 1998 band 

is strong in both the IR and resonance Raman spectra, while the 2089 band is strong only in the 

resonance Raman spectrum and the 2051 cm"1 band is strong only in the IR spectrum. The 

resonance Raman bands are commonly used to predict the radiationless decay mechanism (reverse 

electron transfer), thus a simple model would predict that there should be no vibrational excitation 

of the cs-CN modes as a consequence of electron transfer. 

Figure 2. The infered transient differential absorption spectra (photoexcited sample spectrum 

minus unexcited sample spectrum) of [(CN)5 Fen CN Rum (NH3)5]" in formamide following charge 

transfer excitation using 100 fs, 800nm pump and probe pulses. Each line corresponds to a 

different delay time between pump and probe, as indicated in the legend. The inset shows spectral 

dynamics at 2030 cm"1 (upper black line), 2004 cm"1 (middle red line), 2049 cm" (lower blue line). 

The charge transfer excited state relaxes within ca 200 fs following preparation, and most of the 

observed spectral dynamics correspond to evolution within the ground electronic state. The 

bleach (neg AOD) signal at 1998 and 2051 cm"1 correspond to loss of ground vibrational state 

(the v = 0 level) absorbances of the trans- and eis- CN stretch modes of [(CN)5 Fe CN Ru 

(NH3)5]". The positive AOD features found to slightly lower frequencies of each bleach, at 1980 

and 2030 cm"1 correspond to excited vibrational state transitions (v = 1 -> v = 2) of the trans- 

and eis- CN modes of   [(CN)5 Fe11 CN Ruffl (NH3)5] ', where the frequency shift is due to 
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vibrational anharmonicity. The presence of non-equilibrium vibrational states of the cis-CN mode 

would not be predicted by conventional theories of electron transfer and radiationless decay using 

the spectra seen in Figure 1. 
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